MakeItFrom.com
Menu (ESC)

S35125 Stainless Steel vs. ASTM A387 Grade 9 Steel

Both S35125 stainless steel and ASTM A387 grade 9 steel are iron alloys. They have 52% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S35125 stainless steel and the bottom bar is ASTM A387 grade 9 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 39
20 to 21
Fatigue Strength, MPa 200
160 to 240
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
75
Shear Strength, MPa 370
310 to 380
Tensile Strength: Ultimate (UTS), MPa 540
500 to 600
Tensile Strength: Yield (Proof), MPa 230
230 to 350

Thermal Properties

Latent Heat of Fusion, J/g 300
270
Maximum Temperature: Mechanical, °C 1100
600
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1380
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 12
26
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
10

Otherwise Unclassified Properties

Base Metal Price, % relative 36
6.5
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 6.4
2.1
Embodied Energy, MJ/kg 89
28
Embodied Water, L/kg 210
87

Common Calculations

PREN (Pitting Resistance) 30
12
Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
83 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 140
140 to 310
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 19
18 to 21
Strength to Weight: Bending, points 18
18 to 20
Thermal Diffusivity, mm2/s 3.1
6.9
Thermal Shock Resistance, points 12
14 to 17

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.15
Chromium (Cr), % 20 to 23
8.0 to 10
Iron (Fe), % 36.2 to 45.8
87.1 to 90.8
Manganese (Mn), % 1.0 to 1.5
0.3 to 0.6
Molybdenum (Mo), % 2.0 to 3.0
0.9 to 1.1
Nickel (Ni), % 31 to 35
0
Niobium (Nb), % 0.25 to 0.6
0
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.025
Vanadium (V), % 0
0 to 0.040