MakeItFrom.com
Menu (ESC)

S35125 Stainless Steel vs. EN 1.4980 Stainless Steel

Both S35125 stainless steel and EN 1.4980 stainless steel are iron alloys. They have 84% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S35125 stainless steel and the bottom bar is EN 1.4980 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 39
17
Fatigue Strength, MPa 200
410
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
75
Shear Strength, MPa 370
630
Tensile Strength: Ultimate (UTS), MPa 540
1030
Tensile Strength: Yield (Proof), MPa 230
680

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 490
780
Maximum Temperature: Mechanical, °C 1100
920
Melting Completion (Liquidus), °C 1430
1430
Melting Onset (Solidus), °C 1380
1380
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 12
13
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 36
26
Density, g/cm3 8.1
7.9
Embodied Carbon, kg CO2/kg material 6.4
6.0
Embodied Energy, MJ/kg 89
87
Embodied Water, L/kg 210
170

Common Calculations

PREN (Pitting Resistance) 30
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
150
Resilience: Unit (Modulus of Resilience), kJ/m3 140
1180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 19
36
Strength to Weight: Bending, points 18
28
Thermal Diffusivity, mm2/s 3.1
3.5
Thermal Shock Resistance, points 12
22

Alloy Composition

Aluminum (Al), % 0
0 to 0.35
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0 to 0.1
0.030 to 0.080
Chromium (Cr), % 20 to 23
13.5 to 16
Iron (Fe), % 36.2 to 45.8
49.2 to 58.5
Manganese (Mn), % 1.0 to 1.5
1.0 to 2.0
Molybdenum (Mo), % 2.0 to 3.0
1.0 to 1.5
Nickel (Ni), % 31 to 35
24 to 27
Niobium (Nb), % 0.25 to 0.6
0
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0
1.9 to 2.3
Vanadium (V), % 0
0.1 to 0.5