MakeItFrom.com
Menu (ESC)

S35125 Stainless Steel vs. EN 1.8821 Steel

Both S35125 stainless steel and EN 1.8821 steel are iron alloys. They have 42% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S35125 stainless steel and the bottom bar is EN 1.8821 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 39
25
Fatigue Strength, MPa 200
280
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
73
Shear Strength, MPa 370
340
Tensile Strength: Ultimate (UTS), MPa 540
530
Tensile Strength: Yield (Proof), MPa 230
390

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 12
49
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 36
2.3
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 6.4
1.6
Embodied Energy, MJ/kg 89
21
Embodied Water, L/kg 210
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
120
Resilience: Unit (Modulus of Resilience), kJ/m3 140
400
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 19
19
Strength to Weight: Bending, points 18
19
Thermal Diffusivity, mm2/s 3.1
13
Thermal Shock Resistance, points 12
16

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.030
Carbon (C), % 0 to 0.1
0 to 0.14
Chromium (Cr), % 20 to 23
0
Iron (Fe), % 36.2 to 45.8
96.8 to 99.98
Manganese (Mn), % 1.0 to 1.5
0 to 1.6
Molybdenum (Mo), % 2.0 to 3.0
0 to 0.2
Nickel (Ni), % 31 to 35
0 to 0.5
Niobium (Nb), % 0.25 to 0.6
0 to 0.050
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.010
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.1