MakeItFrom.com
Menu (ESC)

S35125 Stainless Steel vs. K93050 Alloy

Both S35125 stainless steel and K93050 alloy are iron alloys. They have 75% of their average alloy composition in common. There are 19 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.

For each property being compared, the top bar is S35125 stainless steel and the bottom bar is K93050 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Poisson's Ratio 0.28
0.3
Shear Modulus, GPa 78
72
Tensile Strength: Ultimate (UTS), MPa 540
500 to 680

Thermal Properties

Latent Heat of Fusion, J/g 300
270
Melting Completion (Liquidus), °C 1430
1430
Melting Onset (Solidus), °C 1380
1380
Specific Heat Capacity, J/kg-K 470
460
Thermal Expansion, µm/m-K 16
12

Otherwise Unclassified Properties

Base Metal Price, % relative 36
26
Density, g/cm3 8.1
8.2
Embodied Carbon, kg CO2/kg material 6.4
4.7
Embodied Energy, MJ/kg 89
65
Embodied Water, L/kg 210
120

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 19
17 to 23
Strength to Weight: Bending, points 18
17 to 21
Thermal Shock Resistance, points 12
16 to 21

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.15
Chromium (Cr), % 20 to 23
0 to 0.25
Cobalt (Co), % 0
0 to 0.5
Iron (Fe), % 36.2 to 45.8
61.4 to 63.9
Manganese (Mn), % 1.0 to 1.5
0 to 1.0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 31 to 35
36
Niobium (Nb), % 0.25 to 0.6
0
Phosphorus (P), % 0 to 0.045
0 to 0.020
Selenium (Se), % 0
0.15 to 0.3
Silicon (Si), % 0 to 0.5
0 to 0.35
Sulfur (S), % 0 to 0.015
0 to 0.020