MakeItFrom.com
Menu (ESC)

S35125 Stainless Steel vs. N08320 Stainless Steel

Both S35125 stainless steel and N08320 stainless steel are iron alloys. They have a moderately high 90% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S35125 stainless steel and the bottom bar is N08320 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 39
40
Fatigue Strength, MPa 200
190
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
78
Shear Strength, MPa 370
400
Tensile Strength: Ultimate (UTS), MPa 540
580
Tensile Strength: Yield (Proof), MPa 230
220

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 490
430
Maximum Temperature: Mechanical, °C 1100
1100
Melting Completion (Liquidus), °C 1430
1400
Melting Onset (Solidus), °C 1380
1350
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 12
12
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 36
28
Density, g/cm3 8.1
8.0
Embodied Carbon, kg CO2/kg material 6.4
4.9
Embodied Energy, MJ/kg 89
69
Embodied Water, L/kg 210
200

Common Calculations

PREN (Pitting Resistance) 30
22
Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
180
Resilience: Unit (Modulus of Resilience), kJ/m3 140
120
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 19
20
Strength to Weight: Bending, points 18
20
Thermal Diffusivity, mm2/s 3.1
3.3
Thermal Shock Resistance, points 12
13

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.050
Chromium (Cr), % 20 to 23
21 to 23
Iron (Fe), % 36.2 to 45.8
40.4 to 50
Manganese (Mn), % 1.0 to 1.5
0 to 2.5
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 31 to 35
25 to 27
Niobium (Nb), % 0.25 to 0.6
0
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030