MakeItFrom.com
Menu (ESC)

S35135 Stainless Steel vs. 413.0 Aluminum

S35135 stainless steel belongs to the iron alloys classification, while 413.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S35135 stainless steel and the bottom bar is 413.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
73
Elongation at Break, % 34
2.5
Fatigue Strength, MPa 180
130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
28
Shear Strength, MPa 390
170
Tensile Strength: Ultimate (UTS), MPa 590
270
Tensile Strength: Yield (Proof), MPa 230
140

Thermal Properties

Latent Heat of Fusion, J/g 320
570
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1430
590
Melting Onset (Solidus), °C 1380
580
Specific Heat Capacity, J/kg-K 470
900
Thermal Expansion, µm/m-K 16
20

Otherwise Unclassified Properties

Base Metal Price, % relative 37
9.5
Density, g/cm3 8.1
2.6
Embodied Carbon, kg CO2/kg material 6.8
7.6
Embodied Energy, MJ/kg 94
140
Embodied Water, L/kg 220
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
5.7
Resilience: Unit (Modulus of Resilience), kJ/m3 130
130
Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 24
53
Strength to Weight: Axial, points 20
29
Strength to Weight: Bending, points 19
36
Thermal Shock Resistance, points 13
13

Alloy Composition

Aluminum (Al), % 0
82.2 to 89
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 20 to 25
0
Copper (Cu), % 0 to 0.75
0 to 1.0
Iron (Fe), % 28.3 to 45
0 to 2.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0 to 0.35
Molybdenum (Mo), % 4.0 to 4.8
0
Nickel (Ni), % 30 to 38
0 to 0.5
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0.6 to 1.0
11 to 13
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0.4 to 1.0
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.25