MakeItFrom.com
Menu (ESC)

S35135 Stainless Steel vs. A380.0 Aluminum

S35135 stainless steel belongs to the iron alloys classification, while A380.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S35135 stainless steel and the bottom bar is A380.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
73
Elongation at Break, % 34
3.3
Fatigue Strength, MPa 180
140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
27
Shear Strength, MPa 390
190
Tensile Strength: Ultimate (UTS), MPa 590
290
Tensile Strength: Yield (Proof), MPa 230
160

Thermal Properties

Latent Heat of Fusion, J/g 320
510
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1430
590
Melting Onset (Solidus), °C 1380
550
Specific Heat Capacity, J/kg-K 470
870
Thermal Expansion, µm/m-K 16
22

Otherwise Unclassified Properties

Base Metal Price, % relative 37
11
Density, g/cm3 8.1
2.9
Embodied Carbon, kg CO2/kg material 6.8
7.5
Embodied Energy, MJ/kg 94
140
Embodied Water, L/kg 220
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
8.3
Resilience: Unit (Modulus of Resilience), kJ/m3 130
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
48
Strength to Weight: Axial, points 20
28
Strength to Weight: Bending, points 19
34
Thermal Shock Resistance, points 13
13

Alloy Composition

Aluminum (Al), % 0
80.3 to 89.5
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 20 to 25
0
Copper (Cu), % 0 to 0.75
3.0 to 4.0
Iron (Fe), % 28.3 to 45
0 to 1.3
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0 to 0.5
Molybdenum (Mo), % 4.0 to 4.8
0
Nickel (Ni), % 30 to 38
0 to 0.5
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0.6 to 1.0
7.5 to 9.5
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.35
Titanium (Ti), % 0.4 to 1.0
0
Zinc (Zn), % 0
0 to 3.0
Residuals, % 0
0 to 0.5