MakeItFrom.com
Menu (ESC)

S35135 Stainless Steel vs. SAE-AISI H13 Steel

Both S35135 stainless steel and SAE-AISI H13 steel are iron alloys. They have 45% of their average alloy composition in common. There are 20 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is S35135 stainless steel and the bottom bar is SAE-AISI H13 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 79
74
Tensile Strength: Ultimate (UTS), MPa 590
690 to 1820

Thermal Properties

Latent Heat of Fusion, J/g 320
270
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Expansion, µm/m-K 16
10

Otherwise Unclassified Properties

Base Metal Price, % relative 37
6.0
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 6.8
4.3
Embodied Energy, MJ/kg 94
64
Embodied Water, L/kg 220
78

Common Calculations

PREN (Pitting Resistance) 37
9.9
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20
25 to 65
Strength to Weight: Bending, points 19
22 to 43
Thermal Shock Resistance, points 13
25 to 65

Alloy Composition

Carbon (C), % 0 to 0.080
0.32 to 0.45
Chromium (Cr), % 20 to 25
4.8 to 5.5
Copper (Cu), % 0 to 0.75
0 to 0.25
Iron (Fe), % 28.3 to 45
88.8 to 92
Manganese (Mn), % 0 to 1.0
0.2 to 0.5
Molybdenum (Mo), % 4.0 to 4.8
1.1 to 1.8
Nickel (Ni), % 30 to 38
0 to 0.3
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 0.6 to 1.0
0.8 to 1.2
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0.4 to 1.0
0
Vanadium (V), % 0
0.8 to 1.2