MakeItFrom.com
Menu (ESC)

S35140 Stainless Steel vs. 6182 Aluminum

S35140 stainless steel belongs to the iron alloys classification, while 6182 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S35140 stainless steel and the bottom bar is 6182 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 34
6.8 to 13
Fatigue Strength, MPa 250
63 to 99
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
26
Shear Strength, MPa 460
140 to 190
Tensile Strength: Ultimate (UTS), MPa 690
230 to 320
Tensile Strength: Yield (Proof), MPa 310
130 to 270

Thermal Properties

Latent Heat of Fusion, J/g 300
410
Maximum Temperature: Mechanical, °C 1100
190
Melting Completion (Liquidus), °C 1420
640
Melting Onset (Solidus), °C 1370
600
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 14
160
Thermal Expansion, µm/m-K 16
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
40
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
130

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 8.0
2.7
Embodied Carbon, kg CO2/kg material 5.5
8.4
Embodied Energy, MJ/kg 78
150
Embodied Water, L/kg 190
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
21 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 250
110 to 520
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 24
23 to 32
Strength to Weight: Bending, points 22
30 to 38
Thermal Diffusivity, mm2/s 3.7
65
Thermal Shock Resistance, points 16
10 to 14

Alloy Composition

Aluminum (Al), % 0
95 to 97.9
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 20 to 22
0 to 0.25
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 44.1 to 52.7
0 to 0.5
Magnesium (Mg), % 0
0.7 to 1.2
Manganese (Mn), % 1.0 to 3.0
0.5 to 1.0
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 25 to 27
0
Niobium (Nb), % 0.25 to 0.75
0
Nitrogen (N), % 0.080 to 0.2
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0.9 to 1.3
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0
0.050 to 0.2
Residuals, % 0
0 to 0.15