MakeItFrom.com
Menu (ESC)

S35140 Stainless Steel vs. EN 1.8891 Steel

Both S35140 stainless steel and EN 1.8891 steel are iron alloys. They have 51% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S35140 stainless steel and the bottom bar is EN 1.8891 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
180
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34
19
Fatigue Strength, MPa 250
330
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
73
Shear Strength, MPa 460
380
Tensile Strength: Ultimate (UTS), MPa 690
610
Tensile Strength: Yield (Proof), MPa 310
480

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1370
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 14
46
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 31
2.5
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 5.5
1.7
Embodied Energy, MJ/kg 78
24
Embodied Water, L/kg 190
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
110
Resilience: Unit (Modulus of Resilience), kJ/m3 250
630
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24
22
Strength to Weight: Bending, points 22
20
Thermal Diffusivity, mm2/s 3.7
12
Thermal Shock Resistance, points 16
18

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0 to 0.1
0 to 0.2
Chromium (Cr), % 20 to 22
0 to 0.3
Copper (Cu), % 0
0 to 0.7
Iron (Fe), % 44.1 to 52.7
95.2 to 99
Manganese (Mn), % 1.0 to 3.0
1.0 to 1.7
Molybdenum (Mo), % 1.0 to 2.0
0 to 0.1
Nickel (Ni), % 25 to 27
0 to 0.8
Niobium (Nb), % 0.25 to 0.75
0 to 0.050
Nitrogen (N), % 0.080 to 0.2
0 to 0.025
Phosphorus (P), % 0 to 0.045
0 to 0.035
Silicon (Si), % 0 to 0.75
0 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.2