MakeItFrom.com
Menu (ESC)

S35140 Stainless Steel vs. C61000 Bronze

S35140 stainless steel belongs to the iron alloys classification, while C61000 bronze belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S35140 stainless steel and the bottom bar is C61000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
29 to 50
Poisson's Ratio 0.28
0.34
Rockwell B Hardness 88
60 to 85
Shear Modulus, GPa 78
42
Shear Strength, MPa 460
280 to 300
Tensile Strength: Ultimate (UTS), MPa 690
390 to 460
Tensile Strength: Yield (Proof), MPa 310
150 to 190

Thermal Properties

Latent Heat of Fusion, J/g 300
220
Maximum Temperature: Mechanical, °C 1100
210
Melting Completion (Liquidus), °C 1420
1040
Melting Onset (Solidus), °C 1370
990
Specific Heat Capacity, J/kg-K 470
420
Thermal Conductivity, W/m-K 14
69
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
15
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
16

Otherwise Unclassified Properties

Base Metal Price, % relative 31
29
Density, g/cm3 8.0
8.5
Embodied Carbon, kg CO2/kg material 5.5
3.0
Embodied Energy, MJ/kg 78
49
Embodied Water, L/kg 190
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
110 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 250
100 to 160
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 24
13 to 15
Strength to Weight: Bending, points 22
14 to 16
Thermal Diffusivity, mm2/s 3.7
19
Thermal Shock Resistance, points 16
14 to 16

Alloy Composition

Aluminum (Al), % 0
6.0 to 8.5
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 20 to 22
0
Copper (Cu), % 0
90.2 to 94
Iron (Fe), % 44.1 to 52.7
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 1.0 to 3.0
0
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 25 to 27
0
Niobium (Nb), % 0.25 to 0.75
0
Nitrogen (N), % 0.080 to 0.2
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.5