MakeItFrom.com
Menu (ESC)

S35140 Stainless Steel vs. S15500 Stainless Steel

Both S35140 stainless steel and S15500 stainless steel are iron alloys. They have 69% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S35140 stainless steel and the bottom bar is S15500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
290 to 430
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34
6.8 to 16
Fatigue Strength, MPa 250
350 to 650
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
75
Shear Strength, MPa 460
540 to 870
Tensile Strength: Ultimate (UTS), MPa 690
890 to 1490
Tensile Strength: Yield (Proof), MPa 310
590 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 300
280
Maximum Temperature: Corrosion, °C 500
440
Maximum Temperature: Mechanical, °C 1100
820
Melting Completion (Liquidus), °C 1420
1430
Melting Onset (Solidus), °C 1370
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 14
17
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 31
13
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 5.5
2.7
Embodied Energy, MJ/kg 78
39
Embodied Water, L/kg 190
130

Common Calculations

PREN (Pitting Resistance) 28
15
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
98 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 250
890 to 4460
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 24
32 to 53
Strength to Weight: Bending, points 22
26 to 37
Thermal Diffusivity, mm2/s 3.7
4.6
Thermal Shock Resistance, points 16
30 to 50

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.070
Chromium (Cr), % 20 to 22
14 to 15.5
Copper (Cu), % 0
2.5 to 4.5
Iron (Fe), % 44.1 to 52.7
71.9 to 79.9
Manganese (Mn), % 1.0 to 3.0
0 to 1.0
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 25 to 27
3.5 to 5.5
Niobium (Nb), % 0.25 to 0.75
0.15 to 0.45
Nitrogen (N), % 0.080 to 0.2
0
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030