MakeItFrom.com
Menu (ESC)

S35140 Stainless Steel vs. S32808 Stainless Steel

Both S35140 stainless steel and S32808 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 79% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S35140 stainless steel and the bottom bar is S32808 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
270
Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 34
17
Fatigue Strength, MPa 250
350
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 78
81
Shear Strength, MPa 460
480
Tensile Strength: Ultimate (UTS), MPa 690
780
Tensile Strength: Yield (Proof), MPa 310
570

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 500
460
Maximum Temperature: Mechanical, °C 1100
1100
Melting Completion (Liquidus), °C 1420
1470
Melting Onset (Solidus), °C 1370
1420
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 14
14
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 31
24
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 5.5
4.0
Embodied Energy, MJ/kg 78
57
Embodied Water, L/kg 190
180

Common Calculations

PREN (Pitting Resistance) 28
40
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
120
Resilience: Unit (Modulus of Resilience), kJ/m3 250
790
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 24
27
Strength to Weight: Bending, points 22
24
Thermal Diffusivity, mm2/s 3.7
3.8
Thermal Shock Resistance, points 16
21

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.030
Chromium (Cr), % 20 to 22
27 to 27.9
Iron (Fe), % 44.1 to 52.7
58.1 to 62.8
Manganese (Mn), % 1.0 to 3.0
0 to 1.1
Molybdenum (Mo), % 1.0 to 2.0
0.8 to 1.2
Nickel (Ni), % 25 to 27
7.0 to 8.2
Niobium (Nb), % 0.25 to 0.75
0
Nitrogen (N), % 0.080 to 0.2
0.3 to 0.4
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 0 to 0.75
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010
Tungsten (W), % 0
2.1 to 2.5