MakeItFrom.com
Menu (ESC)

S35140 Stainless Steel vs. S32906 Stainless Steel

Both S35140 stainless steel and S32906 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 79% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S35140 stainless steel and the bottom bar is S32906 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
270
Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 34
28
Fatigue Strength, MPa 250
460
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 78
81
Shear Strength, MPa 460
550
Tensile Strength: Ultimate (UTS), MPa 690
850
Tensile Strength: Yield (Proof), MPa 310
620

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 500
460
Maximum Temperature: Mechanical, °C 1100
1100
Melting Completion (Liquidus), °C 1420
1430
Melting Onset (Solidus), °C 1370
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 14
13
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 31
20
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 5.5
3.7
Embodied Energy, MJ/kg 78
52
Embodied Water, L/kg 190
190

Common Calculations

PREN (Pitting Resistance) 28
41
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
220
Resilience: Unit (Modulus of Resilience), kJ/m3 250
950
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 24
30
Strength to Weight: Bending, points 22
26
Thermal Diffusivity, mm2/s 3.7
3.6
Thermal Shock Resistance, points 16
23

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.030
Chromium (Cr), % 20 to 22
28 to 30
Copper (Cu), % 0
0 to 0.8
Iron (Fe), % 44.1 to 52.7
56.6 to 63.6
Manganese (Mn), % 1.0 to 3.0
0.8 to 1.5
Molybdenum (Mo), % 1.0 to 2.0
1.5 to 2.6
Nickel (Ni), % 25 to 27
5.8 to 7.5
Niobium (Nb), % 0.25 to 0.75
0
Nitrogen (N), % 0.080 to 0.2
0.3 to 0.4
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 0 to 0.75
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.030