MakeItFrom.com
Menu (ESC)

S35315 Stainless Steel vs. 2025 Aluminum

S35315 stainless steel belongs to the iron alloys classification, while 2025 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S35315 stainless steel and the bottom bar is 2025 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
110
Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 46
15
Fatigue Strength, MPa 280
130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
27
Shear Strength, MPa 520
240
Tensile Strength: Ultimate (UTS), MPa 740
400
Tensile Strength: Yield (Proof), MPa 300
260

Thermal Properties

Latent Heat of Fusion, J/g 330
400
Maximum Temperature: Mechanical, °C 1100
190
Melting Completion (Liquidus), °C 1370
640
Melting Onset (Solidus), °C 1330
520
Specific Heat Capacity, J/kg-K 480
870
Thermal Conductivity, W/m-K 12
150
Thermal Expansion, µm/m-K 16
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
40
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
120

Otherwise Unclassified Properties

Base Metal Price, % relative 34
10
Density, g/cm3 7.9
3.0
Embodied Carbon, kg CO2/kg material 5.7
7.9
Embodied Energy, MJ/kg 81
150
Embodied Water, L/kg 220
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
55
Resilience: Unit (Modulus of Resilience), kJ/m3 230
450
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 26
37
Strength to Weight: Bending, points 23
40
Thermal Diffusivity, mm2/s 3.1
58
Thermal Shock Resistance, points 17
18

Alloy Composition

Aluminum (Al), % 0
90.9 to 95.2
Carbon (C), % 0.040 to 0.080
0
Cerium (Ce), % 0.030 to 0.1
0
Chromium (Cr), % 24 to 26
0 to 0.1
Copper (Cu), % 0
3.9 to 5.0
Iron (Fe), % 33.6 to 40.6
0 to 1.0
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0.4 to 1.2
Nickel (Ni), % 34 to 36
0
Nitrogen (N), % 0.12 to 0.18
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.2 to 2.0
0.5 to 1.2
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15