MakeItFrom.com
Menu (ESC)

S35315 Stainless Steel vs. 4045 Aluminum

S35315 stainless steel belongs to the iron alloys classification, while 4045 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S35315 stainless steel and the bottom bar is 4045 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 46
2.3
Fatigue Strength, MPa 280
45
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
27
Shear Strength, MPa 520
69
Tensile Strength: Ultimate (UTS), MPa 740
120
Tensile Strength: Yield (Proof), MPa 300
64

Thermal Properties

Latent Heat of Fusion, J/g 330
540
Maximum Temperature: Mechanical, °C 1100
160
Melting Completion (Liquidus), °C 1370
600
Melting Onset (Solidus), °C 1330
580
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 12
170
Thermal Expansion, µm/m-K 16
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
45
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
160

Otherwise Unclassified Properties

Base Metal Price, % relative 34
9.5
Density, g/cm3 7.9
2.6
Embodied Carbon, kg CO2/kg material 5.7
7.8
Embodied Energy, MJ/kg 81
150
Embodied Water, L/kg 220
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
2.4
Resilience: Unit (Modulus of Resilience), kJ/m3 230
29
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
54
Strength to Weight: Axial, points 26
13
Strength to Weight: Bending, points 23
21
Thermal Diffusivity, mm2/s 3.1
74
Thermal Shock Resistance, points 17
5.7

Alloy Composition

Aluminum (Al), % 0
87.4 to 91
Carbon (C), % 0.040 to 0.080
0
Cerium (Ce), % 0.030 to 0.1
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 33.6 to 40.6
0 to 0.8
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0 to 0.050
Nickel (Ni), % 34 to 36
0
Nitrogen (N), % 0.12 to 0.18
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.2 to 2.0
9.0 to 11
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15