MakeItFrom.com
Menu (ESC)

S35315 Stainless Steel vs. Titanium 6-6-2

S35315 stainless steel belongs to the iron alloys classification, while titanium 6-6-2 belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S35315 stainless steel and the bottom bar is titanium 6-6-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 46
6.7 to 9.0
Fatigue Strength, MPa 280
590 to 670
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 78
44
Shear Strength, MPa 520
670 to 800
Tensile Strength: Ultimate (UTS), MPa 740
1140 to 1370
Tensile Strength: Yield (Proof), MPa 300
1040 to 1230

Thermal Properties

Latent Heat of Fusion, J/g 330
400
Maximum Temperature: Mechanical, °C 1100
310
Melting Completion (Liquidus), °C 1370
1610
Melting Onset (Solidus), °C 1330
1560
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 12
5.5
Thermal Expansion, µm/m-K 16
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
1.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 34
40
Density, g/cm3 7.9
4.8
Embodied Carbon, kg CO2/kg material 5.7
29
Embodied Energy, MJ/kg 81
470
Embodied Water, L/kg 220
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
89 to 99
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
34
Strength to Weight: Axial, points 26
66 to 79
Strength to Weight: Bending, points 23
50 to 57
Thermal Diffusivity, mm2/s 3.1
2.1
Thermal Shock Resistance, points 17
75 to 90

Alloy Composition

Aluminum (Al), % 0
5.0 to 6.0
Carbon (C), % 0.040 to 0.080
0 to 0.050
Cerium (Ce), % 0.030 to 0.1
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
0.35 to 1.0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 33.6 to 40.6
0.35 to 1.0
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0
5.0 to 6.0
Nickel (Ni), % 34 to 36
0
Nitrogen (N), % 0.12 to 0.18
0 to 0.040
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.2 to 2.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
1.5 to 2.5
Titanium (Ti), % 0
82.8 to 87.8
Residuals, % 0
0 to 0.4