MakeItFrom.com
Menu (ESC)

S35315 Stainless Steel vs. C18600 Copper

S35315 stainless steel belongs to the iron alloys classification, while C18600 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S35315 stainless steel and the bottom bar is C18600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 46
8.0 to 11
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
44
Shear Strength, MPa 520
310 to 340
Tensile Strength: Ultimate (UTS), MPa 740
520 to 580
Tensile Strength: Yield (Proof), MPa 300
500 to 520

Thermal Properties

Latent Heat of Fusion, J/g 330
210
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1370
1090
Melting Onset (Solidus), °C 1330
1070
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 12
280
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
70
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
71

Otherwise Unclassified Properties

Base Metal Price, % relative 34
31
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 5.7
2.9
Embodied Energy, MJ/kg 81
46
Embodied Water, L/kg 220
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
44 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 230
1060 to 1180
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 26
16 to 18
Strength to Weight: Bending, points 23
16 to 17
Thermal Diffusivity, mm2/s 3.1
81
Thermal Shock Resistance, points 17
19 to 20

Alloy Composition

Carbon (C), % 0.040 to 0.080
0
Cerium (Ce), % 0.030 to 0.1
0
Chromium (Cr), % 24 to 26
0.1 to 1.0
Cobalt (Co), % 0
0 to 0.1
Copper (Cu), % 0
96.5 to 99.55
Iron (Fe), % 33.6 to 40.6
0.25 to 0.8
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 34 to 36
0 to 0.25
Nitrogen (N), % 0.12 to 0.18
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.2 to 2.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0.050 to 0.5
Zirconium (Zr), % 0
0.050 to 0.4
Residuals, % 0
0 to 0.5