MakeItFrom.com
Menu (ESC)

S35315 Stainless Steel vs. C72900 Copper-nickel

S35315 stainless steel belongs to the iron alloys classification, while C72900 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S35315 stainless steel and the bottom bar is C72900 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 46
6.0 to 20
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
45
Shear Strength, MPa 520
540 to 630
Tensile Strength: Ultimate (UTS), MPa 740
870 to 1080
Tensile Strength: Yield (Proof), MPa 300
700 to 920

Thermal Properties

Latent Heat of Fusion, J/g 330
210
Maximum Temperature: Mechanical, °C 1100
210
Melting Completion (Liquidus), °C 1370
1120
Melting Onset (Solidus), °C 1330
950
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 12
29
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 34
39
Density, g/cm3 7.9
8.8
Embodied Carbon, kg CO2/kg material 5.7
4.6
Embodied Energy, MJ/kg 81
72
Embodied Water, L/kg 220
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
49 to 210
Resilience: Unit (Modulus of Resilience), kJ/m3 230
2030 to 3490
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 26
27 to 34
Strength to Weight: Bending, points 23
23 to 27
Thermal Diffusivity, mm2/s 3.1
8.6
Thermal Shock Resistance, points 17
31 to 38

Alloy Composition

Carbon (C), % 0.040 to 0.080
0
Cerium (Ce), % 0.030 to 0.1
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
74.1 to 78
Iron (Fe), % 33.6 to 40.6
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0 to 2.0
0 to 0.3
Nickel (Ni), % 34 to 36
14.5 to 15.5
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0.12 to 0.18
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.2 to 2.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
7.5 to 8.5
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.3