MakeItFrom.com
Menu (ESC)

S35315 Stainless Steel vs. C84000 Brass

S35315 stainless steel belongs to the iron alloys classification, while C84000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S35315 stainless steel and the bottom bar is C84000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
65
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 46
27
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
42
Tensile Strength: Ultimate (UTS), MPa 740
250
Tensile Strength: Yield (Proof), MPa 300
140

Thermal Properties

Latent Heat of Fusion, J/g 330
190
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1370
1040
Melting Onset (Solidus), °C 1330
940
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 12
72
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
16
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
17

Otherwise Unclassified Properties

Base Metal Price, % relative 34
30
Density, g/cm3 7.9
8.6
Embodied Carbon, kg CO2/kg material 5.7
3.0
Embodied Energy, MJ/kg 81
49
Embodied Water, L/kg 220
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
58
Resilience: Unit (Modulus of Resilience), kJ/m3 230
83
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 26
8.2
Strength to Weight: Bending, points 23
10
Thermal Diffusivity, mm2/s 3.1
22
Thermal Shock Resistance, points 17
9.0

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Carbon (C), % 0.040 to 0.080
0
Cerium (Ce), % 0.030 to 0.1
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
82 to 89
Iron (Fe), % 33.6 to 40.6
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 2.0
0 to 0.010
Nickel (Ni), % 34 to 36
0.5 to 2.0
Nitrogen (N), % 0.12 to 0.18
0
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 1.2 to 2.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0.1 to 0.65
Tin (Sn), % 0
2.0 to 4.0
Zinc (Zn), % 0
5.0 to 14
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.7