MakeItFrom.com
Menu (ESC)

S35315 Stainless Steel vs. C93500 Bronze

S35315 stainless steel belongs to the iron alloys classification, while C93500 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S35315 stainless steel and the bottom bar is C93500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 46
15
Poisson's Ratio 0.28
0.35
Shear Modulus, GPa 78
38
Tensile Strength: Ultimate (UTS), MPa 740
220
Tensile Strength: Yield (Proof), MPa 300
110

Thermal Properties

Latent Heat of Fusion, J/g 330
180
Maximum Temperature: Mechanical, °C 1100
160
Melting Completion (Liquidus), °C 1370
1000
Melting Onset (Solidus), °C 1330
850
Specific Heat Capacity, J/kg-K 480
360
Thermal Conductivity, W/m-K 12
70
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
15
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
15

Otherwise Unclassified Properties

Base Metal Price, % relative 34
31
Density, g/cm3 7.9
9.0
Embodied Carbon, kg CO2/kg material 5.7
3.0
Embodied Energy, MJ/kg 81
49
Embodied Water, L/kg 220
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
28
Resilience: Unit (Modulus of Resilience), kJ/m3 230
59
Stiffness to Weight: Axial, points 14
6.3
Stiffness to Weight: Bending, points 25
17
Strength to Weight: Axial, points 26
6.9
Strength to Weight: Bending, points 23
9.1
Thermal Diffusivity, mm2/s 3.1
22
Thermal Shock Resistance, points 17
8.5

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.3
Carbon (C), % 0.040 to 0.080
0
Cerium (Ce), % 0.030 to 0.1
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
83 to 86
Iron (Fe), % 33.6 to 40.6
0 to 0.2
Lead (Pb), % 0
8.0 to 10
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 34 to 36
0 to 1.0
Nitrogen (N), % 0.12 to 0.18
0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 1.2 to 2.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.080
Tin (Sn), % 0
4.3 to 6.0
Zinc (Zn), % 0
0 to 2.0
Residuals, % 0
0 to 1.0