MakeItFrom.com
Menu (ESC)

S35315 Stainless Steel vs. S35125 Stainless Steel

Both S35315 stainless steel and S35125 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 93% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S35315 stainless steel and the bottom bar is S35125 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 46
39
Fatigue Strength, MPa 280
200
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
78
Shear Strength, MPa 520
370
Tensile Strength: Ultimate (UTS), MPa 740
540
Tensile Strength: Yield (Proof), MPa 300
230

Thermal Properties

Latent Heat of Fusion, J/g 330
300
Maximum Temperature: Corrosion, °C 450
490
Maximum Temperature: Mechanical, °C 1100
1100
Melting Completion (Liquidus), °C 1370
1430
Melting Onset (Solidus), °C 1330
1380
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 12
12
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 34
36
Density, g/cm3 7.9
8.1
Embodied Carbon, kg CO2/kg material 5.7
6.4
Embodied Energy, MJ/kg 81
89
Embodied Water, L/kg 220
210

Common Calculations

PREN (Pitting Resistance) 27
30
Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
170
Resilience: Unit (Modulus of Resilience), kJ/m3 230
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 26
19
Strength to Weight: Bending, points 23
18
Thermal Diffusivity, mm2/s 3.1
3.1
Thermal Shock Resistance, points 17
12

Alloy Composition

Carbon (C), % 0.040 to 0.080
0 to 0.1
Cerium (Ce), % 0.030 to 0.1
0
Chromium (Cr), % 24 to 26
20 to 23
Iron (Fe), % 33.6 to 40.6
36.2 to 45.8
Manganese (Mn), % 0 to 2.0
1.0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 34 to 36
31 to 35
Niobium (Nb), % 0
0.25 to 0.6
Nitrogen (N), % 0.12 to 0.18
0
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 1.2 to 2.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.015