MakeItFrom.com
Menu (ESC)

S35500 Stainless Steel vs. 240.0 Aluminum

S35500 stainless steel belongs to the iron alloys classification, while 240.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S35500 stainless steel and the bottom bar is 240.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 14
1.0
Fatigue Strength, MPa 690 to 730
140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
27
Tensile Strength: Ultimate (UTS), MPa 1330 to 1490
240
Tensile Strength: Yield (Proof), MPa 1200 to 1280
200

Thermal Properties

Latent Heat of Fusion, J/g 280
380
Maximum Temperature: Mechanical, °C 870
180
Melting Completion (Liquidus), °C 1460
600
Melting Onset (Solidus), °C 1420
520
Specific Heat Capacity, J/kg-K 470
860
Thermal Conductivity, W/m-K 16
96
Thermal Expansion, µm/m-K 11
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
23
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
65

Otherwise Unclassified Properties

Base Metal Price, % relative 16
12
Density, g/cm3 7.8
3.2
Embodied Carbon, kg CO2/kg material 3.5
8.7
Embodied Energy, MJ/kg 47
150
Embodied Water, L/kg 130
1100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180 to 190
2.2
Resilience: Unit (Modulus of Resilience), kJ/m3 3610 to 4100
280
Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 25
43
Strength to Weight: Axial, points 47 to 53
20
Strength to Weight: Bending, points 34 to 37
26
Thermal Diffusivity, mm2/s 4.4
35
Thermal Shock Resistance, points 44 to 49
11

Alloy Composition

Aluminum (Al), % 0
81.7 to 86.9
Carbon (C), % 0.1 to 0.15
0
Chromium (Cr), % 15 to 16
0
Copper (Cu), % 0
7.0 to 9.0
Iron (Fe), % 73.2 to 77.7
0 to 0.5
Magnesium (Mg), % 0
5.5 to 6.5
Manganese (Mn), % 0.5 to 1.3
0.3 to 0.7
Molybdenum (Mo), % 2.5 to 3.2
0
Nickel (Ni), % 4.0 to 5.0
0.3 to 0.7
Niobium (Nb), % 0.1 to 0.5
0
Nitrogen (N), % 0.070 to 0.13
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15