MakeItFrom.com
Menu (ESC)

S35500 Stainless Steel vs. 5019 Aluminum

S35500 stainless steel belongs to the iron alloys classification, while 5019 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S35500 stainless steel and the bottom bar is 5019 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 14
2.2 to 18
Fatigue Strength, MPa 690 to 730
100 to 160
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
26
Shear Strength, MPa 810 to 910
170 to 210
Tensile Strength: Ultimate (UTS), MPa 1330 to 1490
280 to 360
Tensile Strength: Yield (Proof), MPa 1200 to 1280
120 to 300

Thermal Properties

Latent Heat of Fusion, J/g 280
400
Maximum Temperature: Mechanical, °C 870
180
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1420
540
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 16
130
Thermal Expansion, µm/m-K 11
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
29
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
98

Otherwise Unclassified Properties

Base Metal Price, % relative 16
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 3.5
9.0
Embodied Energy, MJ/kg 47
150
Embodied Water, L/kg 130
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180 to 190
7.6 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 3610 to 4100
110 to 650
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 47 to 53
29 to 38
Strength to Weight: Bending, points 34 to 37
35 to 42
Thermal Diffusivity, mm2/s 4.4
52
Thermal Shock Resistance, points 44 to 49
13 to 16

Alloy Composition

Aluminum (Al), % 0
91.5 to 95.3
Carbon (C), % 0.1 to 0.15
0
Chromium (Cr), % 15 to 16
0 to 0.2
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 73.2 to 77.7
0 to 0.5
Magnesium (Mg), % 0
4.5 to 5.6
Manganese (Mn), % 0.5 to 1.3
0.1 to 0.6
Molybdenum (Mo), % 2.5 to 3.2
0
Nickel (Ni), % 4.0 to 5.0
0
Niobium (Nb), % 0.1 to 0.5
0
Nitrogen (N), % 0.070 to 0.13
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.5
0 to 0.4
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15

Comparable Variants