MakeItFrom.com
Menu (ESC)

S35500 Stainless Steel vs. 6262 Aluminum

S35500 stainless steel belongs to the iron alloys classification, while 6262 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S35500 stainless steel and the bottom bar is 6262 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 14
4.6 to 10
Fatigue Strength, MPa 690 to 730
90 to 110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
26
Shear Strength, MPa 810 to 910
170 to 240
Tensile Strength: Ultimate (UTS), MPa 1330 to 1490
290 to 390
Tensile Strength: Yield (Proof), MPa 1200 to 1280
270 to 360

Thermal Properties

Latent Heat of Fusion, J/g 280
400
Maximum Temperature: Mechanical, °C 870
160
Melting Completion (Liquidus), °C 1460
650
Melting Onset (Solidus), °C 1420
580
Specific Heat Capacity, J/kg-K 470
890
Thermal Conductivity, W/m-K 16
170
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
44
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
140

Otherwise Unclassified Properties

Base Metal Price, % relative 16
10
Density, g/cm3 7.8
2.8
Embodied Carbon, kg CO2/kg material 3.5
8.3
Embodied Energy, MJ/kg 47
150
Embodied Water, L/kg 130
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180 to 190
17 to 31
Resilience: Unit (Modulus of Resilience), kJ/m3 3610 to 4100
530 to 940
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
48
Strength to Weight: Axial, points 47 to 53
29 to 39
Strength to Weight: Bending, points 34 to 37
35 to 42
Thermal Diffusivity, mm2/s 4.4
69
Thermal Shock Resistance, points 44 to 49
13 to 18

Alloy Composition

Aluminum (Al), % 0
94.7 to 97.8
Bismuth (Bi), % 0
0.4 to 0.7
Carbon (C), % 0.1 to 0.15
0
Chromium (Cr), % 15 to 16
0.040 to 0.14
Copper (Cu), % 0
0.15 to 0.4
Iron (Fe), % 73.2 to 77.7
0 to 0.7
Lead (Pb), % 0
0.4 to 0.7
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0.5 to 1.3
0 to 0.15
Molybdenum (Mo), % 2.5 to 3.2
0
Nickel (Ni), % 4.0 to 5.0
0
Niobium (Nb), % 0.1 to 0.5
0
Nitrogen (N), % 0.070 to 0.13
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.5
0.4 to 0.8
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15

Comparable Variants