MakeItFrom.com
Menu (ESC)

S35500 Stainless Steel vs. Grade 18 Titanium

S35500 stainless steel belongs to the iron alloys classification, while grade 18 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S35500 stainless steel and the bottom bar is grade 18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 14
11 to 17
Fatigue Strength, MPa 690 to 730
330 to 480
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 78
40
Shear Strength, MPa 810 to 910
420 to 590
Tensile Strength: Ultimate (UTS), MPa 1330 to 1490
690 to 980
Tensile Strength: Yield (Proof), MPa 1200 to 1280
540 to 810

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Maximum Temperature: Mechanical, °C 870
330
Melting Completion (Liquidus), °C 1460
1640
Melting Onset (Solidus), °C 1420
1590
Specific Heat Capacity, J/kg-K 470
550
Thermal Conductivity, W/m-K 16
8.3
Thermal Expansion, µm/m-K 11
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.7

Otherwise Unclassified Properties

Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 3.5
41
Embodied Energy, MJ/kg 47
670
Embodied Water, L/kg 130
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180 to 190
87 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 3610 to 4100
1380 to 3110
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 47 to 53
43 to 61
Strength to Weight: Bending, points 34 to 37
39 to 49
Thermal Diffusivity, mm2/s 4.4
3.4
Thermal Shock Resistance, points 44 to 49
47 to 67

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0.1 to 0.15
0 to 0.080
Chromium (Cr), % 15 to 16
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 73.2 to 77.7
0 to 0.25
Manganese (Mn), % 0.5 to 1.3
0
Molybdenum (Mo), % 2.5 to 3.2
0
Nickel (Ni), % 4.0 to 5.0
0
Niobium (Nb), % 0.1 to 0.5
0
Nitrogen (N), % 0.070 to 0.13
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
92.5 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4

Comparable Variants