MakeItFrom.com
Menu (ESC)

S35500 Stainless Steel vs. N10003 Nickel

S35500 stainless steel belongs to the iron alloys classification, while N10003 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S35500 stainless steel and the bottom bar is N10003 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 14
42
Fatigue Strength, MPa 690 to 730
260
Poisson's Ratio 0.28
0.3
Shear Modulus, GPa 78
80
Shear Strength, MPa 810 to 910
540
Tensile Strength: Ultimate (UTS), MPa 1330 to 1490
780
Tensile Strength: Yield (Proof), MPa 1200 to 1280
320

Thermal Properties

Latent Heat of Fusion, J/g 280
320
Maximum Temperature: Mechanical, °C 870
930
Melting Completion (Liquidus), °C 1460
1520
Melting Onset (Solidus), °C 1420
1460
Specific Heat Capacity, J/kg-K 470
420
Thermal Conductivity, W/m-K 16
12
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 16
70
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 3.5
13
Embodied Energy, MJ/kg 47
180
Embodied Water, L/kg 130
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180 to 190
260
Resilience: Unit (Modulus of Resilience), kJ/m3 3610 to 4100
240
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
22
Strength to Weight: Axial, points 47 to 53
24
Strength to Weight: Bending, points 34 to 37
21
Thermal Diffusivity, mm2/s 4.4
3.1
Thermal Shock Resistance, points 44 to 49
21

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Boron (B), % 0
0 to 0.010
Carbon (C), % 0.1 to 0.15
0.040 to 0.080
Chromium (Cr), % 15 to 16
6.0 to 8.0
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 0
0 to 0.35
Iron (Fe), % 73.2 to 77.7
0 to 5.0
Manganese (Mn), % 0.5 to 1.3
0 to 1.0
Molybdenum (Mo), % 2.5 to 3.2
15 to 18
Nickel (Ni), % 4.0 to 5.0
64.8 to 79
Niobium (Nb), % 0.1 to 0.5
0
Nitrogen (N), % 0.070 to 0.13
0
Phosphorus (P), % 0 to 0.040
0 to 0.015
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.020
Tungsten (W), % 0
0 to 0.5
Vanadium (V), % 0
0 to 0.5