MakeItFrom.com
Menu (ESC)

S36200 Stainless Steel vs. AISI 444 Stainless Steel

Both S36200 stainless steel and AISI 444 stainless steel are iron alloys. They have a moderately high 93% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S36200 stainless steel and the bottom bar is AISI 444 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 3.4 to 4.6
23
Fatigue Strength, MPa 450 to 570
210
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
78
Shear Strength, MPa 680 to 810
300
Tensile Strength: Ultimate (UTS), MPa 1180 to 1410
470
Tensile Strength: Yield (Proof), MPa 960 to 1240
310

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Maximum Temperature: Corrosion, °C 530
580
Maximum Temperature: Mechanical, °C 820
930
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
23
Thermal Expansion, µm/m-K 11
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 12
15
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.8
3.4
Embodied Energy, MJ/kg 40
47
Embodied Water, L/kg 120
130

Common Calculations

PREN (Pitting Resistance) 15
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 46 to 51
95
Resilience: Unit (Modulus of Resilience), kJ/m3 2380 to 3930
240
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 42 to 50
17
Strength to Weight: Bending, points 32 to 36
17
Thermal Diffusivity, mm2/s 4.3
6.2
Thermal Shock Resistance, points 40 to 48
16

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0 to 0.050
0 to 0.025
Chromium (Cr), % 14 to 14.5
17.5 to 19.5
Iron (Fe), % 75.4 to 79.5
73.3 to 80.8
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0 to 0.3
1.8 to 2.5
Nickel (Ni), % 6.5 to 7.0
0 to 1.0
Niobium (Nb), % 0
0.2 to 0.8
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0.6 to 0.9
0.2 to 0.8