MakeItFrom.com
Menu (ESC)

S36200 Stainless Steel vs. C67500 Bronze

S36200 stainless steel belongs to the iron alloys classification, while C67500 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S36200 stainless steel and the bottom bar is C67500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 3.4 to 4.6
14 to 33
Poisson's Ratio 0.28
0.3
Shear Modulus, GPa 76
40
Shear Strength, MPa 680 to 810
270 to 350
Tensile Strength: Ultimate (UTS), MPa 1180 to 1410
430 to 580
Tensile Strength: Yield (Proof), MPa 960 to 1240
170 to 370

Thermal Properties

Latent Heat of Fusion, J/g 280
170
Maximum Temperature: Mechanical, °C 820
120
Melting Completion (Liquidus), °C 1440
890
Melting Onset (Solidus), °C 1400
870
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 16
110
Thermal Expansion, µm/m-K 11
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
24
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
27

Otherwise Unclassified Properties

Base Metal Price, % relative 12
23
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 2.8
2.8
Embodied Energy, MJ/kg 40
47
Embodied Water, L/kg 120
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 46 to 51
61 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 2380 to 3930
130 to 650
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 42 to 50
15 to 20
Strength to Weight: Bending, points 32 to 36
16 to 19
Thermal Diffusivity, mm2/s 4.3
34
Thermal Shock Resistance, points 40 to 48
14 to 19

Alloy Composition

Aluminum (Al), % 0 to 0.1
0 to 0.25
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 14 to 14.5
0
Copper (Cu), % 0
57 to 60
Iron (Fe), % 75.4 to 79.5
0.8 to 2.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 0.5
0.050 to 0.5
Molybdenum (Mo), % 0 to 0.3
0
Nickel (Ni), % 6.5 to 7.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.3
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.5 to 1.5
Titanium (Ti), % 0.6 to 0.9
0
Zinc (Zn), % 0
35.1 to 41.7
Residuals, % 0
0 to 0.5