MakeItFrom.com
Menu (ESC)

S36200 Stainless Steel vs. C81400 Copper

S36200 stainless steel belongs to the iron alloys classification, while C81400 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S36200 stainless steel and the bottom bar is C81400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 3.4 to 4.6
11
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
41
Tensile Strength: Ultimate (UTS), MPa 1180 to 1410
370
Tensile Strength: Yield (Proof), MPa 960 to 1240
250

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Maximum Temperature: Mechanical, °C 820
200
Melting Completion (Liquidus), °C 1440
1090
Melting Onset (Solidus), °C 1400
1070
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 16
260
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
60
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
61

Otherwise Unclassified Properties

Base Metal Price, % relative 12
33
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.8
2.8
Embodied Energy, MJ/kg 40
45
Embodied Water, L/kg 120
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 46 to 51
36
Resilience: Unit (Modulus of Resilience), kJ/m3 2380 to 3930
260
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 42 to 50
11
Strength to Weight: Bending, points 32 to 36
13
Thermal Diffusivity, mm2/s 4.3
75
Thermal Shock Resistance, points 40 to 48
13

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Beryllium (Be), % 0
0.020 to 0.1
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 14 to 14.5
0.6 to 1.0
Copper (Cu), % 0
98.4 to 99.38
Iron (Fe), % 75.4 to 79.5
0
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 0 to 0.3
0
Nickel (Ni), % 6.5 to 7.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.3
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.6 to 0.9
0
Residuals, % 0
0 to 0.5