MakeItFrom.com
Menu (ESC)

S36200 Stainless Steel vs. C86500 Bronze

S36200 stainless steel belongs to the iron alloys classification, while C86500 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S36200 stainless steel and the bottom bar is C86500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 3.4 to 4.6
25
Poisson's Ratio 0.28
0.3
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 1180 to 1410
530
Tensile Strength: Yield (Proof), MPa 960 to 1240
190

Thermal Properties

Latent Heat of Fusion, J/g 280
170
Maximum Temperature: Mechanical, °C 820
120
Melting Completion (Liquidus), °C 1440
880
Melting Onset (Solidus), °C 1400
860
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 16
86
Thermal Expansion, µm/m-K 11
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
22
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
25

Otherwise Unclassified Properties

Base Metal Price, % relative 12
23
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.8
2.8
Embodied Energy, MJ/kg 40
48
Embodied Water, L/kg 120
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 46 to 51
110
Resilience: Unit (Modulus of Resilience), kJ/m3 2380 to 3930
180
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 42 to 50
19
Strength to Weight: Bending, points 32 to 36
18
Thermal Diffusivity, mm2/s 4.3
28
Thermal Shock Resistance, points 40 to 48
17

Alloy Composition

Aluminum (Al), % 0 to 0.1
0.5 to 1.5
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 14 to 14.5
0
Copper (Cu), % 0
55 to 60
Iron (Fe), % 75.4 to 79.5
0.4 to 2.0
Lead (Pb), % 0
0 to 0.4
Manganese (Mn), % 0 to 0.5
0.1 to 1.5
Molybdenum (Mo), % 0 to 0.3
0
Nickel (Ni), % 6.5 to 7.0
0 to 1.0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.3
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 1.0
Titanium (Ti), % 0.6 to 0.9
0
Zinc (Zn), % 0
36 to 42
Residuals, % 0
0 to 1.0