MakeItFrom.com
Menu (ESC)

S36200 Stainless Steel vs. C93200 Bronze

S36200 stainless steel belongs to the iron alloys classification, while C93200 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is S36200 stainless steel and the bottom bar is C93200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 3.4 to 4.6
20
Fatigue Strength, MPa 450 to 570
110
Poisson's Ratio 0.28
0.35
Shear Modulus, GPa 76
38
Tensile Strength: Ultimate (UTS), MPa 1180 to 1410
240
Tensile Strength: Yield (Proof), MPa 960 to 1240
130

Thermal Properties

Latent Heat of Fusion, J/g 280
180
Maximum Temperature: Mechanical, °C 820
160
Melting Completion (Liquidus), °C 1440
980
Melting Onset (Solidus), °C 1400
850
Specific Heat Capacity, J/kg-K 480
360
Thermal Conductivity, W/m-K 16
59
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
12
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
12

Otherwise Unclassified Properties

Base Metal Price, % relative 12
32
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 2.8
3.2
Embodied Energy, MJ/kg 40
52
Embodied Water, L/kg 120
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 46 to 51
40
Resilience: Unit (Modulus of Resilience), kJ/m3 2380 to 3930
76
Stiffness to Weight: Axial, points 14
6.5
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 42 to 50
7.5
Strength to Weight: Bending, points 32 to 36
9.7
Thermal Diffusivity, mm2/s 4.3
18
Thermal Shock Resistance, points 40 to 48
9.3

Alloy Composition

Aluminum (Al), % 0 to 0.1
0 to 0.0050
Antimony (Sb), % 0
0 to 0.35
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 14 to 14.5
0
Copper (Cu), % 0
81 to 85
Iron (Fe), % 75.4 to 79.5
0 to 0.2
Lead (Pb), % 0
6.0 to 8.0
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 0 to 0.3
0
Nickel (Ni), % 6.5 to 7.0
0 to 1.0
Phosphorus (P), % 0 to 0.030
0 to 1.5
Silicon (Si), % 0 to 0.3
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.080
Tin (Sn), % 0
6.3 to 7.5
Titanium (Ti), % 0.6 to 0.9
0
Zinc (Zn), % 0
2.0 to 4.0
Residuals, % 0
0 to 1.0