MakeItFrom.com
Menu (ESC)

S38815 Stainless Steel vs. 1200 Aluminum

S38815 stainless steel belongs to the iron alloys classification, while 1200 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S38815 stainless steel and the bottom bar is 1200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
23 to 48
Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 34
1.1 to 28
Fatigue Strength, MPa 230
25 to 69
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
26
Shear Strength, MPa 410
54 to 100
Tensile Strength: Ultimate (UTS), MPa 610
85 to 180
Tensile Strength: Yield (Proof), MPa 290
28 to 160

Thermal Properties

Latent Heat of Fusion, J/g 370
400
Maximum Temperature: Mechanical, °C 860
170
Melting Completion (Liquidus), °C 1360
660
Melting Onset (Solidus), °C 1310
650
Specific Heat Capacity, J/kg-K 500
900
Thermal Expansion, µm/m-K 15
23

Otherwise Unclassified Properties

Base Metal Price, % relative 19
9.0
Density, g/cm3 7.5
2.7
Embodied Carbon, kg CO2/kg material 3.8
8.2
Embodied Energy, MJ/kg 54
150
Embodied Water, L/kg 140
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
2.0 to 19
Resilience: Unit (Modulus of Resilience), kJ/m3 220
5.7 to 180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 22
8.7 to 19
Strength to Weight: Bending, points 21
16 to 26
Thermal Shock Resistance, points 15
3.8 to 8.1

Alloy Composition

Aluminum (Al), % 0 to 0.3
99 to 100
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 13 to 15
0
Copper (Cu), % 0.75 to 1.5
0 to 0.050
Iron (Fe), % 56.1 to 67
0 to 1.0
Manganese (Mn), % 0 to 2.0
0 to 0.050
Molybdenum (Mo), % 0.75 to 1.5
0
Nickel (Ni), % 13 to 17
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 5.5 to 6.5
0 to 1.0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15