MakeItFrom.com
Menu (ESC)

S38815 Stainless Steel vs. 2017 Aluminum

S38815 stainless steel belongs to the iron alloys classification, while 2017 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S38815 stainless steel and the bottom bar is 2017 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 34
12 to 18
Fatigue Strength, MPa 230
90 to 130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
27
Shear Strength, MPa 410
130 to 260
Tensile Strength: Ultimate (UTS), MPa 610
190 to 430
Tensile Strength: Yield (Proof), MPa 290
76 to 260

Thermal Properties

Latent Heat of Fusion, J/g 370
390
Maximum Temperature: Mechanical, °C 860
190
Melting Completion (Liquidus), °C 1360
640
Melting Onset (Solidus), °C 1310
510
Specific Heat Capacity, J/kg-K 500
880
Thermal Expansion, µm/m-K 15
24

Otherwise Unclassified Properties

Base Metal Price, % relative 19
10
Density, g/cm3 7.5
3.0
Embodied Carbon, kg CO2/kg material 3.8
8.0
Embodied Energy, MJ/kg 54
150
Embodied Water, L/kg 140
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
24 to 66
Resilience: Unit (Modulus of Resilience), kJ/m3 220
41 to 470
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 22
17 to 40
Strength to Weight: Bending, points 21
24 to 42
Thermal Shock Resistance, points 15
7.9 to 18

Alloy Composition

Aluminum (Al), % 0 to 0.3
91.6 to 95.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 13 to 15
0 to 0.1
Copper (Cu), % 0.75 to 1.5
3.5 to 4.5
Iron (Fe), % 56.1 to 67
0 to 0.7
Magnesium (Mg), % 0
0.4 to 0.8
Manganese (Mn), % 0 to 2.0
0.4 to 1.0
Molybdenum (Mo), % 0.75 to 1.5
0
Nickel (Ni), % 13 to 17
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 5.5 to 6.5
0.2 to 0.8
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15