MakeItFrom.com
Menu (ESC)

S38815 Stainless Steel vs. 2017A Aluminum

S38815 stainless steel belongs to the iron alloys classification, while 2017A aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S38815 stainless steel and the bottom bar is 2017A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 34
2.2 to 14
Fatigue Strength, MPa 230
92 to 130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
27
Shear Strength, MPa 410
120 to 270
Tensile Strength: Ultimate (UTS), MPa 610
200 to 460
Tensile Strength: Yield (Proof), MPa 290
110 to 290

Thermal Properties

Latent Heat of Fusion, J/g 370
390
Maximum Temperature: Mechanical, °C 860
220
Melting Completion (Liquidus), °C 1360
650
Melting Onset (Solidus), °C 1310
510
Specific Heat Capacity, J/kg-K 500
880
Thermal Expansion, µm/m-K 15
23

Otherwise Unclassified Properties

Base Metal Price, % relative 19
11
Density, g/cm3 7.5
3.0
Embodied Carbon, kg CO2/kg material 3.8
8.2
Embodied Energy, MJ/kg 54
150
Embodied Water, L/kg 140
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
6.7 to 53
Resilience: Unit (Modulus of Resilience), kJ/m3 220
90 to 570
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 22
19 to 42
Strength to Weight: Bending, points 21
26 to 44
Thermal Shock Resistance, points 15
8.9 to 20

Alloy Composition

Aluminum (Al), % 0 to 0.3
91.3 to 95.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 13 to 15
0 to 0.1
Copper (Cu), % 0.75 to 1.5
3.5 to 4.5
Iron (Fe), % 56.1 to 67
0 to 0.7
Magnesium (Mg), % 0
0.4 to 1.0
Manganese (Mn), % 0 to 2.0
0.4 to 1.0
Molybdenum (Mo), % 0.75 to 1.5
0
Nickel (Ni), % 13 to 17
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 5.5 to 6.5
0.2 to 0.8
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15