MakeItFrom.com
Menu (ESC)

S38815 Stainless Steel vs. 296.0 Aluminum

S38815 stainless steel belongs to the iron alloys classification, while 296.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S38815 stainless steel and the bottom bar is 296.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
75 to 90
Elastic (Young's, Tensile) Modulus, GPa 190
72
Elongation at Break, % 34
3.2 to 7.1
Fatigue Strength, MPa 230
47 to 70
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
27
Tensile Strength: Ultimate (UTS), MPa 610
260 to 270
Tensile Strength: Yield (Proof), MPa 290
120 to 180

Thermal Properties

Latent Heat of Fusion, J/g 370
420
Maximum Temperature: Mechanical, °C 860
170
Melting Completion (Liquidus), °C 1360
630
Melting Onset (Solidus), °C 1310
540
Specific Heat Capacity, J/kg-K 500
870
Thermal Expansion, µm/m-K 15
22

Otherwise Unclassified Properties

Base Metal Price, % relative 19
11
Density, g/cm3 7.5
3.0
Embodied Carbon, kg CO2/kg material 3.8
7.8
Embodied Energy, MJ/kg 54
150
Embodied Water, L/kg 140
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
7.6 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 220
110 to 220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 22
24 to 25
Strength to Weight: Bending, points 21
30 to 31
Thermal Shock Resistance, points 15
12

Alloy Composition

Aluminum (Al), % 0 to 0.3
89 to 94
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 13 to 15
0
Copper (Cu), % 0.75 to 1.5
4.0 to 5.0
Iron (Fe), % 56.1 to 67
0 to 1.2
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0 to 0.35
Molybdenum (Mo), % 0.75 to 1.5
0
Nickel (Ni), % 13 to 17
0 to 0.35
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 5.5 to 6.5
2.0 to 3.0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.35