MakeItFrom.com
Menu (ESC)

S38815 Stainless Steel vs. 514.0 Aluminum

S38815 stainless steel belongs to the iron alloys classification, while 514.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S38815 stainless steel and the bottom bar is 514.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
50
Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 34
7.3
Fatigue Strength, MPa 230
48
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
25
Shear Strength, MPa 410
140
Tensile Strength: Ultimate (UTS), MPa 610
180
Tensile Strength: Yield (Proof), MPa 290
74

Thermal Properties

Latent Heat of Fusion, J/g 370
400
Maximum Temperature: Mechanical, °C 860
170
Melting Completion (Liquidus), °C 1360
640
Melting Onset (Solidus), °C 1310
610
Specific Heat Capacity, J/kg-K 500
900
Thermal Expansion, µm/m-K 15
24

Otherwise Unclassified Properties

Base Metal Price, % relative 19
9.5
Density, g/cm3 7.5
2.7
Embodied Carbon, kg CO2/kg material 3.8
8.9
Embodied Energy, MJ/kg 54
150
Embodied Water, L/kg 140
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
11
Resilience: Unit (Modulus of Resilience), kJ/m3 220
41
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 22
19
Strength to Weight: Bending, points 21
26
Thermal Shock Resistance, points 15
7.9

Alloy Composition

Aluminum (Al), % 0 to 0.3
93.6 to 96.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 13 to 15
0
Copper (Cu), % 0.75 to 1.5
0 to 0.15
Iron (Fe), % 56.1 to 67
0 to 0.5
Magnesium (Mg), % 0
3.5 to 4.5
Manganese (Mn), % 0 to 2.0
0 to 0.35
Molybdenum (Mo), % 0.75 to 1.5
0
Nickel (Ni), % 13 to 17
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 5.5 to 6.5
0 to 0.35
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15