MakeItFrom.com
Menu (ESC)

S38815 Stainless Steel vs. 6013 Aluminum

S38815 stainless steel belongs to the iron alloys classification, while 6013 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S38815 stainless steel and the bottom bar is 6013 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 34
3.4 to 22
Fatigue Strength, MPa 230
98 to 140
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
26
Shear Strength, MPa 410
190 to 240
Tensile Strength: Ultimate (UTS), MPa 610
310 to 410
Tensile Strength: Yield (Proof), MPa 290
170 to 350

Thermal Properties

Latent Heat of Fusion, J/g 370
410
Maximum Temperature: Mechanical, °C 860
160
Melting Completion (Liquidus), °C 1360
650
Melting Onset (Solidus), °C 1310
580
Specific Heat Capacity, J/kg-K 500
900
Thermal Expansion, µm/m-K 15
23

Otherwise Unclassified Properties

Base Metal Price, % relative 19
9.5
Density, g/cm3 7.5
2.8
Embodied Carbon, kg CO2/kg material 3.8
8.3
Embodied Energy, MJ/kg 54
150
Embodied Water, L/kg 140
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
13 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 220
200 to 900
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
49
Strength to Weight: Axial, points 22
31 to 41
Strength to Weight: Bending, points 21
37 to 44
Thermal Shock Resistance, points 15
14 to 18

Alloy Composition

Aluminum (Al), % 0 to 0.3
94.8 to 97.8
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 13 to 15
0 to 0.1
Copper (Cu), % 0.75 to 1.5
0.6 to 1.1
Iron (Fe), % 56.1 to 67
0 to 0.5
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0 to 2.0
0.2 to 0.8
Molybdenum (Mo), % 0.75 to 1.5
0
Nickel (Ni), % 13 to 17
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 5.5 to 6.5
0.6 to 1.0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15