MakeItFrom.com
Menu (ESC)

S38815 Stainless Steel vs. AWS E316L

Both S38815 stainless steel and AWS E316L are iron alloys. They have a moderately high 91% of their average alloy composition in common. There are 21 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is S38815 stainless steel and the bottom bar is AWS E316L.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 34
34
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
78
Tensile Strength: Ultimate (UTS), MPa 610
550

Thermal Properties

Latent Heat of Fusion, J/g 370
290
Melting Completion (Liquidus), °C 1360
1440
Melting Onset (Solidus), °C 1310
1390
Specific Heat Capacity, J/kg-K 500
470
Thermal Expansion, µm/m-K 15
14

Otherwise Unclassified Properties

Base Metal Price, % relative 19
20
Density, g/cm3 7.5
7.9
Embodied Carbon, kg CO2/kg material 3.8
4.0
Embodied Energy, MJ/kg 54
55
Embodied Water, L/kg 140
160

Common Calculations

PREN (Pitting Resistance) 18
27
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 22
19
Strength to Weight: Bending, points 21
19
Thermal Shock Resistance, points 15
14

Alloy Composition

Aluminum (Al), % 0 to 0.3
0
Carbon (C), % 0 to 0.030
0 to 0.040
Chromium (Cr), % 13 to 15
17 to 20
Copper (Cu), % 0.75 to 1.5
0 to 0.75
Iron (Fe), % 56.1 to 67
58.6 to 69.5
Manganese (Mn), % 0 to 2.0
0.5 to 2.5
Molybdenum (Mo), % 0.75 to 1.5
2.0 to 3.0
Nickel (Ni), % 13 to 17
11 to 14
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 5.5 to 6.5
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.030