MakeItFrom.com
Menu (ESC)

S38815 Stainless Steel vs. EN AC-46100 Aluminum

S38815 stainless steel belongs to the iron alloys classification, while EN AC-46100 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S38815 stainless steel and the bottom bar is EN AC-46100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
91
Elastic (Young's, Tensile) Modulus, GPa 190
73
Elongation at Break, % 34
1.0
Fatigue Strength, MPa 230
110
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
28
Tensile Strength: Ultimate (UTS), MPa 610
270
Tensile Strength: Yield (Proof), MPa 290
160

Thermal Properties

Latent Heat of Fusion, J/g 370
550
Maximum Temperature: Mechanical, °C 860
180
Melting Completion (Liquidus), °C 1360
600
Melting Onset (Solidus), °C 1310
540
Specific Heat Capacity, J/kg-K 500
890
Thermal Expansion, µm/m-K 15
21

Otherwise Unclassified Properties

Base Metal Price, % relative 19
10
Density, g/cm3 7.5
2.7
Embodied Carbon, kg CO2/kg material 3.8
7.6
Embodied Energy, MJ/kg 54
140
Embodied Water, L/kg 140
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 220
170
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 22
27
Strength to Weight: Bending, points 21
34
Thermal Shock Resistance, points 15
12

Alloy Composition

Aluminum (Al), % 0 to 0.3
80.4 to 88.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 13 to 15
0 to 0.15
Copper (Cu), % 0.75 to 1.5
1.5 to 2.5
Iron (Fe), % 56.1 to 67
0 to 1.1
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 0
0 to 0.3
Manganese (Mn), % 0 to 2.0
0 to 0.55
Molybdenum (Mo), % 0.75 to 1.5
0
Nickel (Ni), % 13 to 17
0 to 0.45
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 5.5 to 6.5
10 to 12
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 1.7
Residuals, % 0
0 to 0.25