MakeItFrom.com
Menu (ESC)

S38815 Stainless Steel vs. EN AC-46600 Aluminum

S38815 stainless steel belongs to the iron alloys classification, while EN AC-46600 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S38815 stainless steel and the bottom bar is EN AC-46600 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
77
Elastic (Young's, Tensile) Modulus, GPa 190
72
Elongation at Break, % 34
1.1
Fatigue Strength, MPa 230
75
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
27
Tensile Strength: Ultimate (UTS), MPa 610
180
Tensile Strength: Yield (Proof), MPa 290
110

Thermal Properties

Latent Heat of Fusion, J/g 370
490
Maximum Temperature: Mechanical, °C 860
170
Melting Completion (Liquidus), °C 1360
620
Melting Onset (Solidus), °C 1310
560
Specific Heat Capacity, J/kg-K 500
890
Thermal Expansion, µm/m-K 15
22

Otherwise Unclassified Properties

Base Metal Price, % relative 19
10
Density, g/cm3 7.5
2.8
Embodied Carbon, kg CO2/kg material 3.8
7.8
Embodied Energy, MJ/kg 54
150
Embodied Water, L/kg 140
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
1.7
Resilience: Unit (Modulus of Resilience), kJ/m3 220
81
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 22
18
Strength to Weight: Bending, points 21
25
Thermal Shock Resistance, points 15
8.1

Alloy Composition

Aluminum (Al), % 0 to 0.3
85.6 to 92.4
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 13 to 15
0
Copper (Cu), % 0.75 to 1.5
1.5 to 2.5
Iron (Fe), % 56.1 to 67
0 to 0.8
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 0
0 to 0.35
Manganese (Mn), % 0 to 2.0
0.15 to 0.65
Molybdenum (Mo), % 0.75 to 1.5
0
Nickel (Ni), % 13 to 17
0 to 0.35
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 5.5 to 6.5
6.0 to 8.0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.15