MakeItFrom.com
Menu (ESC)

S38815 Stainless Steel vs. C18900 Copper

S38815 stainless steel belongs to the iron alloys classification, while C18900 copper belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is S38815 stainless steel and the bottom bar is C18900 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 34
14 to 48
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
43
Shear Strength, MPa 410
190 to 300
Tensile Strength: Ultimate (UTS), MPa 610
260 to 500
Tensile Strength: Yield (Proof), MPa 290
67 to 390

Thermal Properties

Latent Heat of Fusion, J/g 370
210
Maximum Temperature: Mechanical, °C 860
200
Melting Completion (Liquidus), °C 1360
1080
Melting Onset (Solidus), °C 1310
1020
Specific Heat Capacity, J/kg-K 500
390
Thermal Expansion, µm/m-K 15
17

Otherwise Unclassified Properties

Base Metal Price, % relative 19
31
Density, g/cm3 7.5
8.9
Embodied Carbon, kg CO2/kg material 3.8
2.7
Embodied Energy, MJ/kg 54
42
Embodied Water, L/kg 140
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
65 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 220
20 to 660
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 22
8.2 to 16
Strength to Weight: Bending, points 21
10 to 16
Thermal Shock Resistance, points 15
9.3 to 18

Alloy Composition

Aluminum (Al), % 0 to 0.3
0 to 0.010
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 13 to 15
0
Copper (Cu), % 0.75 to 1.5
97.7 to 99.15
Iron (Fe), % 56.1 to 67
0
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 2.0
0.1 to 0.3
Molybdenum (Mo), % 0.75 to 1.5
0
Nickel (Ni), % 13 to 17
0
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 5.5 to 6.5
0.15 to 0.4
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0.6 to 0.9
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5