MakeItFrom.com
Menu (ESC)

S38815 Stainless Steel vs. C94700 Bronze

S38815 stainless steel belongs to the iron alloys classification, while C94700 bronze belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is S38815 stainless steel and the bottom bar is C94700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 34
7.9 to 32
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
43
Tensile Strength: Ultimate (UTS), MPa 610
350 to 590
Tensile Strength: Yield (Proof), MPa 290
160 to 400

Thermal Properties

Latent Heat of Fusion, J/g 370
200
Maximum Temperature: Mechanical, °C 860
190
Melting Completion (Liquidus), °C 1360
1030
Melting Onset (Solidus), °C 1310
900
Specific Heat Capacity, J/kg-K 500
380
Thermal Expansion, µm/m-K 15
17

Otherwise Unclassified Properties

Base Metal Price, % relative 19
34
Density, g/cm3 7.5
8.8
Embodied Carbon, kg CO2/kg material 3.8
3.5
Embodied Energy, MJ/kg 54
56
Embodied Water, L/kg 140
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
41 to 89
Resilience: Unit (Modulus of Resilience), kJ/m3 220
110 to 700
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 22
11 to 19
Strength to Weight: Bending, points 21
13 to 18
Thermal Shock Resistance, points 15
12 to 21

Alloy Composition

Aluminum (Al), % 0 to 0.3
0 to 0.0050
Antimony (Sb), % 0
0 to 0.15
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 13 to 15
0
Copper (Cu), % 0.75 to 1.5
85 to 90
Iron (Fe), % 56.1 to 67
0 to 0.25
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 2.0
0 to 0.2
Molybdenum (Mo), % 0.75 to 1.5
0
Nickel (Ni), % 13 to 17
4.5 to 6.0
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 5.5 to 6.5
0 to 0.0050
Sulfur (S), % 0 to 0.020
0 to 0.050
Tin (Sn), % 0
4.5 to 6.0
Zinc (Zn), % 0
1.0 to 2.5
Residuals, % 0
0 to 1.3