MakeItFrom.com
Menu (ESC)

S38815 Stainless Steel vs. K93050 Alloy

Both S38815 stainless steel and K93050 alloy are iron alloys. They have 77% of their average alloy composition in common. There are 19 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is S38815 stainless steel and the bottom bar is K93050 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Poisson's Ratio 0.29
0.3
Shear Modulus, GPa 74
72
Tensile Strength: Ultimate (UTS), MPa 610
500 to 680

Thermal Properties

Latent Heat of Fusion, J/g 370
270
Melting Completion (Liquidus), °C 1360
1430
Melting Onset (Solidus), °C 1310
1380
Specific Heat Capacity, J/kg-K 500
460
Thermal Expansion, µm/m-K 15
12

Otherwise Unclassified Properties

Base Metal Price, % relative 19
26
Density, g/cm3 7.5
8.2
Embodied Carbon, kg CO2/kg material 3.8
4.7
Embodied Energy, MJ/kg 54
65
Embodied Water, L/kg 140
120

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 22
17 to 23
Strength to Weight: Bending, points 21
17 to 21
Thermal Shock Resistance, points 15
16 to 21

Alloy Composition

Aluminum (Al), % 0 to 0.3
0
Carbon (C), % 0 to 0.030
0 to 0.15
Chromium (Cr), % 13 to 15
0 to 0.25
Cobalt (Co), % 0
0 to 0.5
Copper (Cu), % 0.75 to 1.5
0
Iron (Fe), % 56.1 to 67
61.4 to 63.9
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 0.75 to 1.5
0
Nickel (Ni), % 13 to 17
36
Phosphorus (P), % 0 to 0.040
0 to 0.020
Selenium (Se), % 0
0.15 to 0.3
Silicon (Si), % 5.5 to 6.5
0 to 0.35
Sulfur (S), % 0 to 0.020
0 to 0.020