MakeItFrom.com
Menu (ESC)

S38815 Stainless Steel vs. N07773 Nickel

S38815 stainless steel belongs to the iron alloys classification, while N07773 nickel belongs to the nickel alloys. They have 47% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S38815 stainless steel and the bottom bar is N07773 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 34
40
Fatigue Strength, MPa 230
220
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
77
Shear Strength, MPa 410
480
Tensile Strength: Ultimate (UTS), MPa 610
710
Tensile Strength: Yield (Proof), MPa 290
270

Thermal Properties

Latent Heat of Fusion, J/g 370
320
Maximum Temperature: Mechanical, °C 860
990
Melting Completion (Liquidus), °C 1360
1510
Melting Onset (Solidus), °C 1310
1460
Specific Heat Capacity, J/kg-K 500
450
Thermal Expansion, µm/m-K 15
13

Otherwise Unclassified Properties

Base Metal Price, % relative 19
75
Density, g/cm3 7.5
8.5
Embodied Carbon, kg CO2/kg material 3.8
13
Embodied Energy, MJ/kg 54
180
Embodied Water, L/kg 140
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
220
Resilience: Unit (Modulus of Resilience), kJ/m3 220
180
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 22
23
Strength to Weight: Bending, points 21
21
Thermal Shock Resistance, points 15
20

Alloy Composition

Aluminum (Al), % 0 to 0.3
0 to 2.0
Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 13 to 15
18 to 27
Copper (Cu), % 0.75 to 1.5
0
Iron (Fe), % 56.1 to 67
0 to 32
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 0.75 to 1.5
2.5 to 5.5
Nickel (Ni), % 13 to 17
45 to 60
Niobium (Nb), % 0
2.5 to 6.0
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 5.5 to 6.5
0 to 0.5
Sulfur (S), % 0 to 0.020
0 to 0.010
Titanium (Ti), % 0
0 to 2.0
Tungsten (W), % 0
0 to 6.0