MakeItFrom.com
Menu (ESC)

S39277 Stainless Steel vs. AISI 308L Stainless Steel

Both S39277 stainless steel and AISI 308L stainless steel are iron alloys. Both are furnished in the annealed condition. They have 89% of their average alloy composition in common.

For each property being compared, the top bar is S39277 stainless steel and the bottom bar is AISI 308L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
170
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 28
34
Fatigue Strength, MPa 480
180
Poisson's Ratio 0.27
0.28
Reduction in Area, % 57
46
Shear Modulus, GPa 80
78
Shear Strength, MPa 600
380
Tensile Strength: Ultimate (UTS), MPa 930
580
Tensile Strength: Yield (Proof), MPa 660
230

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 450
430
Maximum Temperature: Mechanical, °C 1100
1010
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1410
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 16
15
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 23
16
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.2
3.2
Embodied Energy, MJ/kg 59
45
Embodied Water, L/kg 180
160

Common Calculations

PREN (Pitting Resistance) 43
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
160
Resilience: Unit (Modulus of Resilience), kJ/m3 1070
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 33
21
Strength to Weight: Bending, points 27
20
Thermal Diffusivity, mm2/s 4.2
4.1
Thermal Shock Resistance, points 26
13

Alloy Composition

Carbon (C), % 0 to 0.025
0 to 0.080
Chromium (Cr), % 24 to 26
19.5 to 22
Copper (Cu), % 1.2 to 2.0
0
Iron (Fe), % 56.8 to 64.3
63.8 to 70.5
Manganese (Mn), % 0 to 0.8
1.0 to 2.5
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 6.5 to 8.0
9.0 to 11
Nitrogen (N), % 0.23 to 0.33
0
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0 to 0.8
0.25 to 0.6
Sulfur (S), % 0 to 0.0020
0 to 0.030
Tungsten (W), % 0.8 to 1.2
0