MakeItFrom.com
Menu (ESC)

S39277 Stainless Steel vs. ASTM A182 Grade F122

Both S39277 stainless steel and ASTM A182 grade F122 are iron alloys. They have 75% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S39277 stainless steel and the bottom bar is ASTM A182 grade F122.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
220
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 28
23
Fatigue Strength, MPa 480
320
Poisson's Ratio 0.27
0.28
Reduction in Area, % 57
45
Shear Modulus, GPa 80
76
Shear Strength, MPa 600
450
Tensile Strength: Ultimate (UTS), MPa 930
710
Tensile Strength: Yield (Proof), MPa 660
450

Thermal Properties

Latent Heat of Fusion, J/g 300
270
Maximum Temperature: Mechanical, °C 1100
600
Melting Completion (Liquidus), °C 1460
1490
Melting Onset (Solidus), °C 1410
1440
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 16
24
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
10
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
12

Otherwise Unclassified Properties

Base Metal Price, % relative 23
12
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 4.2
3.0
Embodied Energy, MJ/kg 59
44
Embodied Water, L/kg 180
100

Common Calculations

PREN (Pitting Resistance) 43
17
Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
140
Resilience: Unit (Modulus of Resilience), kJ/m3 1070
520
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 33
25
Strength to Weight: Bending, points 27
22
Thermal Diffusivity, mm2/s 4.2
6.4
Thermal Shock Resistance, points 26
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0 to 0.025
0.070 to 0.14
Chromium (Cr), % 24 to 26
10 to 11.5
Copper (Cu), % 1.2 to 2.0
0.3 to 1.7
Iron (Fe), % 56.8 to 64.3
81.3 to 87.7
Manganese (Mn), % 0 to 0.8
0 to 0.7
Molybdenum (Mo), % 3.0 to 4.0
0.25 to 0.6
Nickel (Ni), % 6.5 to 8.0
0 to 0.5
Niobium (Nb), % 0
0.040 to 0.1
Nitrogen (N), % 0.23 to 0.33
0.040 to 0.1
Phosphorus (P), % 0 to 0.025
0 to 0.020
Silicon (Si), % 0 to 0.8
0 to 0.5
Sulfur (S), % 0 to 0.0020
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0.8 to 1.2
1.5 to 2.5
Vanadium (V), % 0
0.15 to 0.3
Zirconium (Zr), % 0
0 to 0.010