MakeItFrom.com
Menu (ESC)

S39277 Stainless Steel vs. ASTM A182 Grade F911

Both S39277 stainless steel and ASTM A182 grade F911 are iron alloys. They have 73% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S39277 stainless steel and the bottom bar is ASTM A182 grade F911.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
220
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 28
20
Fatigue Strength, MPa 480
350
Poisson's Ratio 0.27
0.28
Reduction in Area, % 57
46
Shear Modulus, GPa 80
76
Shear Strength, MPa 600
430
Tensile Strength: Ultimate (UTS), MPa 930
690
Tensile Strength: Yield (Proof), MPa 660
500

Thermal Properties

Latent Heat of Fusion, J/g 300
270
Maximum Temperature: Mechanical, °C 1100
600
Melting Completion (Liquidus), °C 1460
1480
Melting Onset (Solidus), °C 1410
1440
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 16
26
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
9.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
10

Otherwise Unclassified Properties

Base Metal Price, % relative 23
9.5
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 4.2
2.8
Embodied Energy, MJ/kg 59
40
Embodied Water, L/kg 180
90

Common Calculations

PREN (Pitting Resistance) 43
15
Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
130
Resilience: Unit (Modulus of Resilience), kJ/m3 1070
650
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 33
24
Strength to Weight: Bending, points 27
22
Thermal Diffusivity, mm2/s 4.2
6.9
Thermal Shock Resistance, points 26
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0.00030 to 0.0060
Carbon (C), % 0 to 0.025
0.090 to 0.13
Chromium (Cr), % 24 to 26
8.5 to 9.5
Copper (Cu), % 1.2 to 2.0
0
Iron (Fe), % 56.8 to 64.3
86.2 to 88.9
Manganese (Mn), % 0 to 0.8
0.3 to 0.6
Molybdenum (Mo), % 3.0 to 4.0
0.9 to 1.1
Nickel (Ni), % 6.5 to 8.0
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0.23 to 0.33
0.040 to 0.090
Phosphorus (P), % 0 to 0.025
0 to 0.020
Silicon (Si), % 0 to 0.8
0.1 to 0.5
Sulfur (S), % 0 to 0.0020
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0.8 to 1.2
0.9 to 1.1
Vanadium (V), % 0
0.18 to 0.25
Zirconium (Zr), % 0
0 to 0.010