MakeItFrom.com
Menu (ESC)

S39277 Stainless Steel vs. EN 1.4446 Stainless Steel

Both S39277 stainless steel and EN 1.4446 stainless steel are iron alloys. They have 90% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S39277 stainless steel and the bottom bar is EN 1.4446 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
140
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 28
23
Fatigue Strength, MPa 480
160
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 80
79
Tensile Strength: Ultimate (UTS), MPa 930
490
Tensile Strength: Yield (Proof), MPa 660
240

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 450
410
Maximum Temperature: Mechanical, °C 1100
980
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1410
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 16
14
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 23
22
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 4.2
4.5
Embodied Energy, MJ/kg 59
60
Embodied Water, L/kg 180
160

Common Calculations

PREN (Pitting Resistance) 43
34
Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
93
Resilience: Unit (Modulus of Resilience), kJ/m3 1070
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 33
17
Strength to Weight: Bending, points 27
17
Thermal Diffusivity, mm2/s 4.2
3.6
Thermal Shock Resistance, points 26
11

Alloy Composition

Carbon (C), % 0 to 0.025
0 to 0.030
Chromium (Cr), % 24 to 26
16.5 to 18.5
Copper (Cu), % 1.2 to 2.0
0
Iron (Fe), % 56.8 to 64.3
59.7 to 66.9
Manganese (Mn), % 0 to 0.8
0 to 1.5
Molybdenum (Mo), % 3.0 to 4.0
4.0 to 4.5
Nickel (Ni), % 6.5 to 8.0
12.5 to 14.5
Nitrogen (N), % 0.23 to 0.33
0.12 to 0.22
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.8
0 to 1.0
Sulfur (S), % 0 to 0.0020
0 to 0.030
Tungsten (W), % 0.8 to 1.2
0