MakeItFrom.com
Menu (ESC)

S39277 Stainless Steel vs. EN 2.4650 Nickel

S39277 stainless steel belongs to the iron alloys classification, while EN 2.4650 nickel belongs to the nickel alloys. They have a modest 32% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S39277 stainless steel and the bottom bar is EN 2.4650 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 28
34
Fatigue Strength, MPa 480
480
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 80
80
Shear Strength, MPa 600
730
Tensile Strength: Ultimate (UTS), MPa 930
1090
Tensile Strength: Yield (Proof), MPa 660
650

Thermal Properties

Latent Heat of Fusion, J/g 300
320
Maximum Temperature: Mechanical, °C 1100
1010
Melting Completion (Liquidus), °C 1460
1400
Melting Onset (Solidus), °C 1410
1350
Specific Heat Capacity, J/kg-K 470
450
Thermal Conductivity, W/m-K 16
12
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 23
80
Density, g/cm3 7.9
8.5
Embodied Carbon, kg CO2/kg material 4.2
10
Embodied Energy, MJ/kg 59
140
Embodied Water, L/kg 180
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
320
Resilience: Unit (Modulus of Resilience), kJ/m3 1070
1030
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 33
36
Strength to Weight: Bending, points 27
28
Thermal Diffusivity, mm2/s 4.2
3.1
Thermal Shock Resistance, points 26
33

Alloy Composition

Aluminum (Al), % 0
0.3 to 0.6
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0 to 0.025
0.040 to 0.080
Chromium (Cr), % 24 to 26
19 to 21
Cobalt (Co), % 0
19 to 21
Copper (Cu), % 1.2 to 2.0
0 to 0.2
Iron (Fe), % 56.8 to 64.3
0 to 0.7
Manganese (Mn), % 0 to 0.8
0 to 0.6
Molybdenum (Mo), % 3.0 to 4.0
5.6 to 6.1
Nickel (Ni), % 6.5 to 8.0
46.9 to 54.2
Nitrogen (N), % 0.23 to 0.33
0
Phosphorus (P), % 0 to 0.025
0 to 0.020
Silicon (Si), % 0 to 0.8
0 to 0.4
Sulfur (S), % 0 to 0.0020
0 to 0.0070
Titanium (Ti), % 0
1.9 to 2.4
Tungsten (W), % 0.8 to 1.2
0